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POINCARE’S GEOMETRIC THEOREM FOR FLOWS

HAROLD ABELSON & CHARLES STANTON

The celebrated “last geometric theorem of Poincaré” states that an area
preserving homeomorphism of the annulus, which rotates the two boundary
circles in opposite directions, must have at least two fixed points. Poincaré con-
jectured this result [3] and showed that it would imply the existence of closed
orbits in the restricted three-body problem. G. D. Birkhoff gave an ingenious
proof that there must be at least one fixed point [1], and attempts to establish
a second fixed point have led to investigations of the fixed point indices of area
preserving maps.

This note provides a very short and elementary proof of the analogous the-
orem for flows and also gives a generalization to systems of commuting vector
fields on higher dimensional manifolds. We would like to thank Nancy Stanton
for suggesting the higher dimensional generalization, and Julian Palmore for
pointing out the easy way in which our proof gives a second fixed point.

Theorem. Let A be a closed annulus, and let X be a C* vector field on A
which is tangent to the boundary and induces an area preserving flow on A.
Assume that, at each point of the boundary, X is nonzero and points in the
positive direction. (That is, at each point of the boundary the pair (X,N),
where N is the unit normal pointing into the annulus, is positively oriented.)
Then X vanishes at at least two points of A.

Proof. Let w be the area form on the annulus, and let » = iyw be the in-
terior product of w with X. Since the flow preserves area, the Lie derivative
L ;0 of @ with respect to X vanishes identically. Hence 0 = Lyw = iydw +
diyw = dz) shows that 7 is a closed 1-form.

Indeed, 7 is exact. Since every l-cycle in A is homologous to one of the
boundary circles, it suffices to show that » has period zero around a boundary
circle. This holds because X is tangent to the boundary, and therefore » van-
ishes identically along the boundary. Hence there is a function f on the annulus
such that » = df.

Since the form w is nondegenerate, the vector fields X and grad f have ex-
actly the same zeroes. To find a zero of X, it suffices therefore to find a criti-
cal point of f. In particular, a maximum of f in the interior of 4 will do. On
the boundary of A4 the interior normal derivative of f is everywhere positive,
for
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N({f) = df(N) = o(X,N) > 0.

Therefore f cannot have a maximum on the boundary and so must have one
in the interior.

We claim that f must have at least two critical points in 4. Let pe A be
the interior maximum. On the boundary of A, grad f is nonzero and points
inward into A. Therefore, if p were the only critical point of f, we could re-
tract 4 to p by following the trajectories of grad f. This proves the theorem.

Remark. The difficulty in establishing Poincaré’s original conjecture lies
in showing that a fixed point of an area preserving transformation has nonzero
index. We avoid this difficulty by producing a maximum of the function f.

Finally, we give a higher dimensional generalization of Poincaré’s theorem.
Let M™*! be a compact oriented manifold with boundary which admits a sys-
tem of » linearly independent vector fields X, - - -, X,. These restrict to give
a parallelization on each boundary component of M"*!, and we can compare
the orientation coming from this parallelization with the orientation induced
from M™*!. Namely, if T is a boundary component of M and N is the inward
unit normal vector field, we say that X, - - -, X,, gives an oriented paralleliza-
tion if at each point p of T the orientation of <X (p), - - -, X,(p), N(p)> agrees
with the given orientation of M.

Theorem. Let M"*! be a compact oriented manifold such that the relative
homology H,(M, oM ; R) vanishes. Suppose M admits a system of n linearly
independent commuting C* vector fields X, - - -, X, which are volume preserv-
ing and flow tangent to the boundary. Then

(1) M is diffeomorphic to T* X I where T" is the n-torus,

2) X,,---,X, restrict to an oriented parallelization on precisely one of
the two boundary components of M.

Proof. Let w be the volume form on M, and define 7 to be the 1-form
ix,ix, - -+ iz, . Using the fact that the X, preserve w and the commutation re-
lation [Ly, iy] = i;x yy, One sees easily that y is closed. As before, 7 vanishes
on vectors tangent to the boundary, so the homology assumption implies that
7 Is exact, i.e., » = df. The function f can have no critical points, or else the
X’s would become linearly dependent. Therefore M must have at least two
boundary components—one on which the inward normal derivative df(N) =
7(N) = o(X,, -+ -, X,, N) is positive, and one on which it is negative. Other-
wise f would attain either a maximum or a minimum at some point in the in-
terior of M. Let T be a boundary component on which the inward normal
derivative is positive. Following the gradient of f shows that M is diffeomor-
phic to T x I. Finally, T is parallelized by a system of commuting vector
fields and therefore admits the structure of an abelian Lie group [2, p. 212].

Example. The two commuting vector fields on the two-torus 7° do not
extend to independent commuting volume preserving vector fields on the solid
torus. If we bore out the “core” of the solid torus to obtain 7% x I, the vector
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fields extend, but not in such a way as to give the induced orientation on the
boundary. Notice that the same argument as in the two-dimensional case im-
plies that linear independence breaks down at at least two points.

Note. Professor G. A. Hedlund has informed us that our first theorem and
its proof appeared in R. Hermann, Sorme differeatial geometric aspects of the
Legrange variational problem, lllinois J. Math. 6 (1962) p. 641, and in R.
Hermann, Differential geometry and the calculus of variations, Academic Press,
New York, 1968, p. 180.
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